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1. Introduction

The study of double-diffusive convection has received considerable attention during the last
several decades since this occurs in a wide range of natural settings. The origins of these
studies can be traced to oceanography when hot salty water lies over cold fresh water of
a higher density resulting in double-diffusive instabilities known as “salt-fingers,” Stern (35;
36). Typical technological motivations for the study of double-diffusive convection range from
such diverse fields as the migration of moisture through air contained in fibrous insulations,
grain storage systems, the dispersion of contaminants through water-saturated soil, crystal
growth and the underground disposal of nuclear wastes. Double-diffusive convection has
also been cited as being of particular relevance in the modeling of solar ponds (Akbarzadeh
and Manins (1)) and magma chambers (Fernando and Brandt (12)).
Double-diffusive convection problems have been investigated by, among others, Nield (28)
Baines and Gill (3), Guo et al. (14), Khanafer and Vafai (17), Sunil et al. (37) and Gaikwad et
al. (13). Studies have been carried out on horizontal, inclined and vertical surfaces in a porous
medium by, among others, Cheng (9; 10), Nield and Bejan (29) and Ingham and Pop (32).
Na and Chiou (24) presented the problem of laminar natural convection in Newtonian fluids
over the frustum of a cone while Lai (18) investigated the heat and mass transfer by natural
convection from a horizontal line source in saturated porous medium. Natural convection
over a vertical wavy cone has been investigated by Pop and Na (33). Nakyam and Hussain
(25) studied the combined heat and mass transfer by natural convection in a porous medium
by integral methods.
Chamkha and Khaled (4) studied the hydromagnetic heat and mass transfer by mixed
convection from a vertical plate embedded in a uniform porous medium. Chamkha (5)
investigated the coupled heat and mass transfer by natural convection of Newtonian fluids
about a truncated cone in the presence of magnetic field and radiation effects and Yih (38)
examined the effect of radiation in convective flow over a cone. Cheng (6) used an integral
approach to study the heat and mass transfer by natural convection from truncated cones
in porous media with variable wall temperature and concentration. Khanafer and Vafai (17)
studied the double-diffusive convection in a lid-driven enclosure filled with a fluid-saturated
porous medium. Mortimer and Eyring (22) used an elementary transition state approach to
obtain a simple model for Soret and Dufour effects in thermodynamically ideal mixtures of
substances with molecules of nearly equal size. In their model the flow of heat in the Dufour
effect was identified as the transport of the enthalpy change of activation as molecules diffuse.
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The results were found to fit the Onsager reciprocal relationship (Onsager, (30)). Alam et al.
(2) investigated the Dufour and Soret effects on steady combined free-forced convective and
mass transfer flow past a semi-infinite vertical flat plate of hydrogen-air mixtures. They used
the fourth order Runge-Kutta method to solve the governing equations of motion. Their study
showed that the Dufour and Soret effects should not be neglected. Mansour et al. (21) studied
the effects of a chemical reaction and thermal stratification on MHD free convective heat and
mass transfer over a vertical stretching surface embedded in a porous media with Soret and
Dufour effects. Narayana and Murthy (26) examined the Soret and Dufour effects on free
convection heat and mass transfer from a horizontal flat plate in a Darcy porous medium.
The effects of the Soret and Dufour parameters on free convection along a vertical wavy
surface in a Newtonian fluid saturated Darcy porous medium has been investigated by
Narayana and Sibanda (27). Their study showed that in both the aiding and opposing
buoyancy cases increasing the Soret parameter leads to a reduction in the axial mass transfer
coefficient. They further showed that the effect of the Dufour parameter is to increase the heat
transfer coefficient at the surface. On the other hand, the mass transfer coefficient increased
with the Dufour parameter only up to a certain critical value of the Soret parameter. Beyond
this critical value, the mass transfer coefficient decreased with increasing Dufour parameter
values.
The thermophoresis effect on a vertical plate embedded in a non-Darcy porous medium with
suction and injection and subject to Dufour and Soret effects was investigated by Partha (31).
The findings in this study underlined the importance of the Dufour, Soret and dispersion
parameters on heat and mass transfer. The results showed that the Soret effect is influential in
increasing the concentration distribution in both aiding as well as opposing buoyancy cases.
Cheng (8) studied the Dufour and Soret effects on heat and mass transfer over a
downward-pointing vertical cone embedded in a porous medium saturated with a Newtonian
fluid and constant wall temperature and concentration.
In this work we investigate heat and mass transfer from an inverted smooth and a wavy cone
in porous media. In the case of the smooth cone we extend the work of Murthy and Singh (23)
and El-Amin (11) to include cross-diffusion effects.
As with most problems in science and engineering, the equations that describe
double-diffusive convection from an inverted cone in a porous medium are highly nonlinear
and do not have closed form solutions. For the smooth cone, the equations are solved
used the successive linearisation method (see Makukula et al. (19; 20)) which combines a
non-perturbation technique with the Chebyshev spectral collocation method to produce an
algorithm that is numerically accurate. The accuracy and robustness of the linearisation
method is proved by using the Matlab bvp4c numerical routine and a shooting method to
solve the equations. For the wavy cone, the governing nonlinear partial differential equations
are solved using the well known Keller-box method.

2. Flow over a smooth cone in porous medium

Consider the problem of double-diffusive convection flow over inverted cone with half-angle
Ω, embedded in a saturated non-Darcy porous medium as shown in Figure 1. The origin of
the coordinate system is at the vertex of the cone. The x-axis measures the distance along the
surface of the cone and the y-axis measures the distance outward and normal to the surface
of the cone. The surface of the cone is subject to a non-uniform temperature Tw > T∞ where
T∞ is the temperature far from the cone surface. The solute concentration varies from Cw on
the surface of the inverted cone to a lower concentration C∞ in the ambient fluid. The solid

82 Mass Transfer - Advanced Aspects

www.intechopen.com



Heat and Mass Transfer from an Inverted Cone in

a Porous Medium with Cross-Diffusion Effects 3

and fluid phases are assumed to be in local thermal equilibrium. The governing equations for
such a flow are (see Yih (38), Cheng (8), Murthy (23), El-Amin (11));
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where for a thin boundary layer, r = x sin Ω, g is the acceleration due to gravity, c is an
empirical constant, K is the permeability, ν is kinematic viscosity of the fluid, respectively,
β and β∗ are the thermal expansion and the concentration expansion coefficients, αy and Dy

are the effective thermal and mass diffusivities of the saturated porous medium defined by
αy = α + γdu and Dy = D + ξdu, respectively, γ and ξ are coefficients of thermal and
solutal dispersions, respectively, α and D are constant thermal and molecular diffusivities,
kT is the thermal diffusion ratio, cs is concentration susceptibility and cp is the specific heat
at constant pressure. We assume a nonlinear power-law for temperature and concentration
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Fig. 1. Inverted smooth cone in a porous medium

variations within the fluid so that the boundary conditions are

v = 0, u = 0, T = Tw = T∞ + Axn, C = Cw = C∞ + Bxn on y = 0, x ≥ 0 (5)

u = 0, T = T∞, C = C∞ as y → ∞, (6)

where A, B > 0 are constants and n is the power-law index. The subscripts w, ∞ refer to the
cone surface and ambient conditions respectively. We introduce the similarity variables

η =
y

x
Ra

1
2
x , ψ = αrRax

1
2 f (η), θ(η) =

T − T∞

Tw − T∞
, φ(η) =

C − C∞

Cw − C∞
, (7)
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where ψ is the stream function and Rax is the Rayleigh number defined by:

u =
1

r

∂ψ

∂y
, v = − 1

r

∂ψ

∂x
and Rax =

gβK cos Ω(Tw − T∞)x

αν
. (8)

The dimensionless momentum, energy and concentration equations become

f ′′ + 2λ f ′ f ′′ − θ′ − Nφ′ = 0, (9)

θ′′ +
n + 3

2
f θ′ − n f ′θ + Raγ( f ′′θ′ + f ′θ′′) + D f φ′′ = 0, (10)

1

Le
φ′′ +
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2
f φ′ − n f ′φ + Raξ ( f ′′φ′ + f ′φ′′) + Srθ′′ = 0, (11)

subject to the boundary conditions

f = 0, θ = 1 , φ = 1 on η = 0,

f ′ = 0, θ = 0 , φ = 0 on η → ∞. (12)

where primes denote differentiation with respect to η. The important thermo-physical
parameters are the buoyancy ratio N (where N > 0 represents aiding buoyancy and N < 0
represents the opposing buoyancy), the Dufour parameter D f , the Soret parameter Sr, the
pore depended Rayleigh number Rad and the Lewis number Le. These are defined as
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where Raγ = γRad, Raξ = ξRad represent the thermal and solutal dispersions respectively,
λ = σ̂Rad and σ̂ is an inertial parameter. The parameters of engineering interest in heat and
mass problems are the local Nusselt number Nux and the local Sherwood number Shx. These
parameters characterize the surface heat and mass transfer rates respectively. The local heat
and mass transfer rates from the surface of the cone are characterized by the Nusselt and
Sherwood numbers respectively where

Nux = −Ra
1
2
x [1 + Raγ f ′(0)]θ′(0) and Shx = −Ra

1
2
x [1 + Raξ f ′(0)]φ′(0). (15)

2.1 Method of solution

To solve equations (9) - (12), the successive linearisation method (see Makukula et al. (19; 20))
was used. This assumes that the functions f (η), θ(η) and φ(η)) may be expressed as

f (η) = fi(η) +
i−1

∑
m=0

fm(η),

θ(η) = θi(η) +
i−1

∑
m=0

θm(η), (16)

phi(η) = φi(η) +
i−1

∑
m=0

φm(η),
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where fi, θi, φi (i = 1, 2, 3, . . .) are such that

lim
i→∞

fi = lim
i→∞

θi = lim
i→∞

φi = 0. (17)

The functions fm, θm and φm (m ≥ 1) are approximations that are obtained by recursively
solving the linear parts of the equations that result from substituting (16) in equations (9) - (11).
Using the above assumptions, nonlinear terms in fi, θi, φi and their corresponding derivatives
are considered to be very small and therefore neglected.
Starting from the initial guesses

f0(η) = 1 − e−η , θ0(η) = e−η and φ0(η) = e−η , (18)

which are chosen to satisfy boundary conditions (12), the subsequent solutions for fi, hi, θi

i ≥ 1 are obtained by successively solving the linearized form of the governing equations.
The linearized equations to be solved are

a1,i−1 f ′′i + a2,i−1 f ′i − θ′i − Nφ′
i = r1,i−1, (19)
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subject to the boundary conditions

fi(0) = f ′i (∞) = 0, θi(0) = θi(∞) = φi(0) = φi(∞) = 0. (22)

The coefficient parameters ak,i−1, bk,i−1, ck,i−1 (k = 1, 2, ..., 6), rj,i−1 (j = 1, 2, 3) are given by
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The functions fi, θi, φi (i ≥ 1) are obtained by iteratively solving equations (19) - (22). The
approximate solutions for f (η), θ(η) and φ(η) are then obtained as

f (η) ≈
M̂

∑
m=0

fm(η), θ(η) ≈
M̂

∑
m=0

θm(η), φ(η) ≈
M̂

∑
m=0

φm(η), (31)

where M̂ is the order of the SLM approximation. Equations (19) - (22) were solved using
the Chebyshev spectral collocation method where the unknown functions are approximated
using Chebyshev interpolating polynomials at the Gauss-Lobatto points

ξ j = cos
π j

N̂
, j = 0, 1, . . . , N̂, (32)

where N̂ is the number of collocation points. The physical region [0, ∞) is first transformed
into the region [−1, 1] using the domain truncation technique in which the problem is solved
on the interval [0, L] instead of [0, ∞). This is achieved by using the mapping

η

L
=

ξ + 1

2
, −1 ≤ ξ ≤ 1, (33)

where L is the scaling parameter used to invoke the boundary condition at infinity. The
unknown functions fi, θi and φi are approximated at the collocation points by

fi(ξ) ≈
N

∑
k=0

fi(ξk)Tk(ξ j), θi(ξ) ≈
N

∑
k=0

θi(ξk)Tk(ξ j), φi(ξ) ≈
N

∑
k=0

φi(ξk)Tk(ξ j), j = 0, 1, . . . , N̂,

(34)

where Tk is the kth Chebyshev polynomial defined as

Tk(ξ) = cos[k cos−1(ξ)]. (35)

The derivatives at the collocation points are represented as

ds fi

dηs =
N̂

∑
k=0

D
s
kj fi(ξk),

dsθi

dηs =
N̂

∑
k=0

D
s
kjθi(ξk),

dsφi

dηs =
N̂

∑
k=0

D
s
kjφi(ξk), j = 0, 1, . . . , N̂, (36)
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where s is the order of differentiation and D = 2
LD with D being the Chebyshev spectral

differentiation matrix. Substituting equations (34) - (36) in (19) - (22) leads to the matrix
equation

Ai−1Xi = Ri−1, (37)

subject to the boundary conditions

fi(ξ N̂) = 0,
N̂

∑
k=0

DN̂k fi(ξk) = 0,
N̂

∑
k=0

D0k fi(ξk) = 0, (38)

θi(ξ N̂
) = θi(ξ0) = φi(ξ N̂

) = φi(ξ0) = 0. (39)

In equation (37), Ai−1 is a (3N̂ + 3)× (3N̂ + 3) square matrix and Xi and Ri are (3N̂ + 1)× 1
column vectors defined by

Ai−1 =

⎡
⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦ , Xi =

⎡
⎣

Fi

Θi

Φi

⎤
⎦ , Ri−1 =

⎡
⎣

r1,i−1

r2,i−1

r3,i−1

⎤
⎦ , (40)

where

Fi = [ fi(ξ0), fi(ξ1), . . . , fi(ξ N̂−1), fi(ξ N̂)]T, (41)

Θi = [θi(ξ0), θi(ξ1), . . . , θi(ξ N̂−1), θi(ξ N̂)]
T, (42)

Φi = [φi(ξ0), φi(ξ1), . . . , φi(ξ N̂−1
), φi(ξ N̂

)]T, (43)

r1,i−1 = [r1,i−1(ξ0), r1,i−1(ξ1), . . . , r1,i−1(ξ N̂−1), r1,i−1(ξ N̂)]
T, (44)

r2,i−1 = [r2,i−1(ξ0), r2,i−1(ξ1), . . . , r2,i−1(ξ N̂−1), r2,i−1(ξ N̂
)]T, (45)

r3,i−1 = [r3,i−1(ξ0), r3,i−1(ξ1), . . . , r3,i−1(ξ N̂−1), r3,i−1(ξ N̂)]
T, (46)

A11 = a1,i−1D
2 + a2,i−1D, A12 = −I, A13 = −NI (47)

A21 = b4,i−1D
2 + b5,i−1D + b6,i−1I, A22 = b1,i−1D

2 + b2,i−1D + b3,i−1I, (48)

A23 = D f D
2, A31 = c4,i−1D

2 + c5,i−1D + c6,i−1I, (49)

A32 = c1,i−1D
2 + c2,i−1D + c3,i−1I, A33 = SrD

2. (50)

In the above definitions, ak,i−1, bk,i−1, ck,i−1 (k = 1, 2, .., 6) are diagonal matrices of size (N̂ +

1)× (N̂ + 1) and I is an identity matrix of size (N̂ + 1)× (N̂ + 1). After modifying the matrix
system (37) to incorporate boundary conditions (38) - (37), the solution is obtained as

Xi = A
−1
i−1Ri−1. (51)

Equations (9) - (12) were further solved numerically using the Matlab bvp4c routine
and a shooting technique comprising the Runge-Kutta method of four slopes and the
Newton-Raphson method. In solving the boundary value problem by the shooting method,
the appropriate ‘∞’ was determined through actual computations and differs for each set of
parameter values.
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2.2 Discussion of smooth cone results

In the absence of the inertia parameter λ, Soret and Dufour effects, the non-Darcy problem
reduces to that considered by Yih (38) who solved the governing equations using the
Keller-box scheme. The problem would also be a special case of the study by Cheng (8)
who used a cubic spline collocation method to solve the governing equations. The results
from these previous studies are used as a benchmark to test the accuracy of the linearisation
method. The heat and mass transfer coefficients are given in Table 1 for different orders of the
linearisation method, buoyancy and Lewis numbers. In general, the linearisation method has
fully converged to the numerical results at the seventh order for all parameter values.

N Le SLM Yih (38) Cheng (8)
order 3 order 7 order 8

4 1 1.5990 1.7186 1.7186 1.7186 1.7186
4 10 1.1886 1.1795 1.1795 1.1795 1.1794
1 1 1.0869 1.0870 1.0870 1.0869 1.0870

Nux√
Rax

1 10 0.9031 0.9031 0.9031 0.9030 0.9032

1 100 0.8141 0.8141 0.8141 0.8141 0.8143
0 1 0.7686 0.7686 0.7686 0.7686 0.7685
0 10 0.7686 0.7686 0.7686 0.7686 0.7685
4 1 1.5990 1.7186 1.7186 1.7186 1.7186
4 10 5.6790 5.6980 5.6980 5.6977 5.6949

Shx√
Rax

1 1 1.0869 1.0870 1.0870 1.0869 1.0870

1 10 3.8141 3.8141 3.8141 3.8139 3.8134
1 100 12.3653 12.3653 12.3653 12.3645 12.3377
0 1 0.7686 0.7686 0.7686 0.7686 0.7685
0 10 0.7686 0.7686 0.7686 0.7686 0.7686

Table 1. Benchmark results for Nux/Ra
1
2
x and Shx/Ra

1
2
x when λ = 0.0, n = 0.0, Raγ = 0.0,

Raξ = 0.0, D f = 0.0 and Sr = 0.0

Sr D f SLM bvp4c Shooting method

order 3 order 7 order 8

1.5 0.03 1.550183 1.550010 1.550010 1.550010 1.55001
Nux√

Rax
1.0 0.12 1.493268 1.493106 1.493106 1.493106 1.49311

0.5 0.30 1.373266 1.373121 1.373121 1.373121 1.37312
0.1 0.60 1.170132 1.169958 1.169958 1.169958 1.16996
1.5 0.03 0.674035 0.675657 0.675657 0.675657 0.675658

Shx√
Rax

1.0 0.12 0.960995 0.962038 0.962038 0.962038 0.962039

0.5 0.30 1.251253 1.251840 1.251840 1.251840 1.251840
0.1 0.60 1.466009 1.466449 1.466449 1.466449 1.466450

Table 2. Comparison of values of Nux/Ra
1
2
x and Shx/Ra

1
2
x for λ = 1.0, N = 1.0, n = 1.0,

Raγ = 0.5, Raξ = 0.5 and Le = 1.0
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Table 2 shows the effects of the Dufour and Soret parameters on the heat and mass transfer
coefficients when the other parameters are held constant. The accuracy of the method
is compared with the Matlab bvp4c solver and a shooting method. Again, the results
demonstrate that the SLM is accurate and converges rapidly to the numerical approximations.
Furthermore the results show that the heat transfer rate increases with the Soret effect
but decreases with the Dufour parameter. On the other hand, mass transfer decreases
with increasing Soret numbers while increasing with Dufour numbers. These findings are
consistent with those of Narayana and Sibanda (26) where the heat transfer coefficient was
observed to increase with increasing values of the Soret parameter while the mass transfer
coefficient decreased with increasing values of the Soret parameter.
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Fig. 2. Effect of (a) inertia parameter λ, (b) power-law index n, (c) buoyancy parameter N,
and (d) the thermal dispersion parameter Raγ on the fluid velocity when Le = 1, Sr = 0.3
and D f = 0.2

Figure 2 shows the effect of (a) the inertia parameter λ, (b) the power-law index n, (c) the
buoyancy parameter N, and (d) the modified Rayleigh number Raγ on the fluid velocity for
the inverted cone in a non-Darcy porous medium. Here N < 1 implies that the concentration
buoyancy force is less than the thermal buoyancy force, N = 1 implies that the buoyancy
forces are equal and the case N > 1 exists when the concentration buoyancy force exceeds the
thermal buoyancy force. It is clear that the boundary layer thickness increases with λ, N and
the Rayleigh number. However, the velocity decreases as the power-law index increases.
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Fig. 3. Effect of (a) inertia parameter λ, (b) power-law index n, (c) the buoyancy parameter N,
and (d) the thermal dispersion parameter Raγ on the temperature profile when Le = 1,
Sr = 0.3 and D f = 0.2

Figures 3 - 4 show the effects of (a) the inertia parameter λ, (b) the power-law index n, (c)
the buoyancy parameter N, and (d) the thermal dispersion parameter Raγ on the temperature
and solute concentration profiles. The temperature profiles decrease with increasing n. The
concentration profiles increase whereas temperature profile decreases with increasing thermal
dispersion parameter.

Figure 5 depicts the variation of the heat transfer rate NuxRa−1/2
x and the mass transfer rate

ShxRa−1/2
x with Lewis numbers for different values of the Dufour and Soret parameters. For

fixed Soret numbers, it is evident that as Le increases, the Nusselt number decreases for any
particular value of D f . The variation of the Sherwood number with Le for different values of
D f is shown in Figure 5(b). Increasing Le enhances the mass transfer rate for any particular
value of D f . It is also evident that as D f increases the Sherwood number increases for all
values of Le.
The variation of the Nusselt and Sherwood numbers with Le and Sr when the Dufour number
is fixed is shown in Figures 5(c) - 5(d). Increasing Le reduces the Nusselt number for all
values of Sr. Conversely, increasing the Soret parameter enhances the Nusselt number. Also,
increasing Le contributes to enhancing the mass transfer rate for any particular value of Sr.
On the other hand, increasing Sr reduces the Sherwood number.
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Fig. 4. Effect of (a) inertia parameter λ, and (b) the thermal dispersion parameter Raγ on the
concentration profile when Le = 1, Sr = 0.3 and D f = 0.2

3. Flow over a wavy cone in porous media

In this section we investigate the case of double-diffusive convection in a fluid around an
inverted wavy cone. Figure 6 shows the model of the problem investigated. The wavy surface
of the cone is described by

y = σ∗(x) = a∗ sin (πx/�), (52)

where a∗ is the amplitude of the wavy surface and 2� is the characteristic length of the wave.
The governing momentum, heat and solute concentration equations can be written in the form

∂u

∂y
− ∂v

∂x
=

gK

ν

(
βt cos(Ω)

∂T

∂y
+ βt sin(Ω)

∂T

∂x
+ βc cos(Ω)

∂C

∂y
+ βc cos(Ω)

∂C

∂x

)
, (53)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+

∂2T

∂y2

)
+

Dk

cscp

(
∂2C

∂x2
+

∂2C

∂y2

)
, (54)

u
∂C

∂x
+ v

∂C

∂y
= D

(
∂2C

∂x2
+

∂2C

∂y2

)
+

Dk

cscp

(
∂2T

∂x2
+

∂2T

∂y2

)
, (55)

subject to boundary conditions

v = 0, T = Tw, C = Cw on y = σ∗(x) = a∗ sin(πx/�), (56)

u = 0, T = T∞, C = C∞ as y → ∞. (57)

Here the symbols have their usual meanings. We now use the following non-dimensional
variables;

(X, Y, R, σ, a) = (x, y, r, σ∗, a∗) /�, (U, V) = (u, v) �/α, (58)

Θ = (T − T∞)/(Tw − T∞) and Φ = (C − C∞)/(Cw − C∞). (59)
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Fig. 5. The effect of the Dufour and Soret parameters on heat and mass transfers with
λ = 0.7, n = 1, Raγ = 0.5, Raξ = 0.5, Le = 1 (i) Sr = 0.3 and (ii) D f = 0.2

The governing equations now become,

∂U

∂Y
− ∂V

∂X
= Ra

[
∂Θ

∂Y
+ N

∂Φ

∂Y
+ tan(Ω)

(
∂Θ

∂X
+ N

∂Φ

∂X

)]
, (60)

U
∂Θ

∂X
+ V

∂Θ

∂Y
=

(
∂2Θ

∂X2
+

∂2Θ

∂Y2

)
+ D f

(
∂2Φ

∂X2
+

∂2Φ

∂Y2

)
, (61)

U
∂Φ

∂X
+ V

∂Φ

∂Y
=

1

Le

(
∂2Φ

∂X2
+

∂2Φ

∂Y2

)
+ Sr

(
∂2Θ

∂X2
+

∂2Θ

∂Y2

)
. (62)
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Fig. 6. Schematic sketch of the vertical wavy cone

The parameters appearing above are given by equations (13) - (14). Introducing the stream
function ψ(X, Y) defined such that

U =
1

R

∂ψ

∂Y
and V = − 1

R

∂ψ

∂X
, (63)

equations (60) - (62) can be written in the following form

1

R

(
∂2ψ

∂X2
+

∂2ψ

∂Y2
− RX

R

∂ψ

∂X

)
= Ra

[
∂Θ

∂Y
+ N

∂Φ

∂Y
+ tan(Ω)

(
∂Θ

∂X
+ N

∂Φ

∂X

)]
, (64)

1

R

(
∂ψ

∂Y

∂Θ

∂X
− ∂ψ

∂X

∂Θ

∂Y

)
=

(
∂2Θ

∂X2
+

∂2Θ

∂Y2

)
+ D f

(
∂2Φ

∂X2
+

∂2Φ

∂Y2

)
, (65)

1

R

(
∂ψ

∂Y

∂Φ

∂X
− ∂ψ

∂X

∂Φ

∂Y

)
=

1

Le

(
∂2Φ

∂X2
+

∂2Φ

∂Y2

)
+ Sr

(
∂2Θ

∂X2
+

∂2Θ

∂Y2

)
, (66)

where R is the non-dimensional radius of the cone. The appropriate boundary conditions are

ψ = 0, Θ = 1, Φ = 1 on Y = σ(X) = a sin(πX), (67)

∂ψ

∂y
= 0, Θ = 0, Φ = 0 as Y → ∞. (68)

To transform the wavy surface of the cone to a smooth one we introduce the following
transformation,

X̄ = X,

ȲRa−1/2 = Y − σ(X), (69)

ψ̄ = Ra−1/2ψ.
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Substituting the transformations (70) into equations (64) - (66) and letting Ra → ∞, we obtain
the following equations

1 + σ2
X̄

R

∂2ψ̄

∂Ȳ2
= [1 − σX̄ tan(Ω)]

(
∂Θ

∂Ȳ
+ N

∂Φ

∂Ȳ

)
, (70)

(1 + σ2
X̄)

(
∂2Θ

∂Ȳ2
+ D f

∂2Φ

∂Ȳ2

)
=

1

R

(
∂ψ̄

∂Ȳ

∂Θ

∂X̄
− ∂ψ̄

∂X̄

∂Θ

∂Ȳ

)
, (71)

(1 + σ2
X̄)

(
1

Le

∂2Φ

∂Ȳ2
+ Sr

∂2Θ

∂Ȳ2

)
=

1

R

(
∂ψ̄

∂Ȳ

∂Φ

∂X̄
− ∂ψ̄

∂X̄

∂Φ

∂Ȳ

)
. (72)

We may further simplify equations (70) - (72) by introducing the following transformation

ξ = X̄, η = Ȳ/[(1 + σ2
ξ )ξ

1/2], ψ̄ = Rξ1/2 f (ξ, η), Θ = θ(ξ, η), Φ = φ(ξ, η). (73)

Substituting equation (73) into equations (70) - (72), gives the nonlinear system of differential
equations;

f ′′ = [1 − σξ tan(Ω)](θ′ + Nφ′), (74)

θ′′ +
3

2
f θ′ + D f φ′′ = ξ( f ′θξ − θ′ fξ), (75)

1

Le
φ′′ +

3

2
f φ′ + Srθ′′ = ξ( f ′φξ − φ′ fξ), (76)

with boundary conditions

f (ξ, 0) = 0, θ(ξ, 0) = 1, φ(ξ, 0) = 1,
f ′(ξ, ∞) = 0, θ(ξ, ∞) = 0, φ(ξ, ∞) = 0. (77)

The associated local Nusselt and Sherwood numbers are given by

Nux = −Ra1/2 ξ1/2θ′(ξ, 0)

(1 + σ2
ξ )

1
2

and Shx = −Ra1/2 ξ1/2φ′(ξ, 0)

(1 + σ2
ξ )

1
2

. (78)

The mean Nusselt and Sherwood numbers from the leading edge to streamwise position x are
given by

Num

Ra1/2
= − x

�

∫ x
�

0 ξ−1/2θ′(ξ, 0)dξ
∫ x

�

0 (1 + σ2
ξ )

1
2 dξ

,
Shm

Ra1/2
= − x

�

∫ x
�

0 ξ−1/2φ′(ξ, 0)dξ
∫ x

�

0 (1 + σ2
ξ )

1
2 dξ

. (79)

3.1 Discussion of wavy cone results

The governing equations (74) - (76) along with the boundary conditions (77), were solved
numerically using the Keller-box method (see Keller (16)) for various parameter combinations.
Two hundred uniform grid points of step size 0.05 were used in the η- direction. A uniform
grid with 120 nodes was used in the ξ direction. At every ξ grid line, the iteration process
is carried out until an accuracy of 10−6 is achieved for all the variables. The computations
carried out are given in Figures 7 to 14.
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Figure 7 shows the effect of the Dufour number D f on heat and mass transfer for two different
values of the amplitude a. The effect of increasing the amplitude, on average, is to reduce the
heat and mass transfer rates as compared with the limiting case of a smooth cone. Figures
7(c) and 7(d) highlight the same. Figures 7(a) and 7(b) show that for a = 0 (smooth cone)
both NuxRa−1/2 and ShxRa−1/2 increase steadily with ξ whereas for the wavy cone (i.e., a 	=
0) we observe oscillations in NuxRa−1/2 and ShxRa−1/2 over the three complete cycles of
undulations from ξ = 0 to ξ = 6 having length two. These results represent the nonlinear
coupling of the change in fluid velocity and orientation of the gravitation. The results are
in agreement with those reported by Cheng (6) and Pop and Na (34). The Dufour number
D f reduces NuxRa−1/2 and NumRa−1/2. The opposite is true in the case of ShxRa−1/2 and

ShmRa−1/2.
The effect of D f on heat and mass transfer is depicted in Figure 8 for two different values
of the cone half angle Ω. From 8(c) and 8(d) it is clear that increasing the half angle Ω, on
average, reduces the heat and mass transfer rates. Figures 8(a) and 8(b) show that there is an
increase in oscillations of NuxRa−1/2 and ShxRa−1/2 for higher values of Ω. In this case the
Dufour number also reduces the heat transfer while enhancing mass transfer.
Figure 9 demonstrates the effect of D f on heat and mass transfer for two different values of
buoyancy ratio N. It is evident that the buoyancy ratio amplifies heat and mass transfer from
the cone. Again, the Dufour number contributes to lowering heat transfer while enhancing
mass transfer rates.
The effect of D f on the heat and mass transfer is highlighted for two different values of Lewis
numbers in Figure 10. We observe that Le reduces heat transfer whereas the opposite is true
in the case of mass transfer. For large values of Le, higher values of D f (≥ 0.5) produce
negative heat transfer rates indicating that heat diffuses from fluid to the cone in such cases.
Figures 10(a) and 10(c) confirm and reinforce the same fact. The effect of Soret number Sr

on heat and mass transfer for two different values of amplitude a is projected in Figure 11.
The decreasing effect of the amplitude a on heat and mass transfer rates observed in this
situation also. The Soret number Sr contributes to increasing NuxRa−1/2 and NumRa−1/2

while reducing ShxRa−1/2 ShmRa−1/2 as can be seen in Figures 11(a) - 11(d).
The effect of Sr on heat and mass transfer is shown in Figure 12 for two different values of
cone half angle Ω. The fact that Ω reduces the heat and mass transfer rates is observed in
plots 12(a) and 12(d). The Soret number Sr has the effect of increasing the heat transfer and
reducing the mass transfer for all values of Ω.
Figure 13 shows the effect of Sr on heat and mass transfer rates for two different values of the
buoyancy ratio N. From 13(a) - 13(d) we observe that the buoyancy ratio enhances both heat
and mass transfer rates. For selected values of N, Sr contributes towards enhancing the heat
transfer rate while reducing the mass transfer rate.
The effect of Sr on the heat and mass transfer rates is shown in Figure 14 for selected values
of the Lewis number Le. It is evident that Le reduces the heat transfer whereas the opposite
is true in case of mass transfer. At large values of Le there is a critical value of Sr up to which
NuxRa−1/2 and NumRa−1/2 increases and beyond this critical value, both NuxRa−1/2 and
NumRa−1/2 start to fall as can be more clearly seen in Figures 14(a) and 14(c). From Figures
14(b) - 14(d) we observe that the effect of Sr is to reduce the rate of mass transfer from the
surface of the wavy cone.
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Fig. 7. Effect of D f on heat and mass transfer with Ω = π/9, N = 1, Le = 2 and Sr = 0.2
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Fig. 8. Effect of D f on heat and mass transfer with a = 0.2, N = 1, Le = 2and Sr = 0.2
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Fig. 9. Effect of D f on heat and mass transfer with a = 0.2, Ω = π/9, Le = 2 and Sr = 0.2
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Fig. 10. Effect of D f on heat and mass transfer with a = 0.2, Ω = π/9, N = 1 and Sr = 0.2
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Fig. 11. Effect of Sr on heat and mass transfer with Ω = π/9, N = 1, Le = 2 and D f = 0.3
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Fig. 12. Effect of Sr on heat and mass transfer with a = 0.2, N = 1, Le = 2and D f = 0.3

Heat and Mass Transfer from an Inverted Cone in

a Porous Medium with Cross-Diffusion Effects 2

(a) (b)

(c) (d)

101Heat and Mass Transfer from an Inverted Cone in a Porous Medium with Cross-Diffusion Effects

www.intechopen.com



Fig. 13. Effect of Sr on heat and mass transfer with a = 0.2, Ω = π/9, Le = 2 and D f = 0.3
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Fig. 14. Effect of Sr on heat and mass transfer with a = 0.2, Ω = π/9, N = 1 and D f = 0.3
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4. Conclusions

Double-diffusive convection from inverted smooth and wavy cones in Darcy porous media
has been investigated. A similarity analysis is performed to reduce the governing equations to
coupled nonlinear differential equations that are solved by using the successive linearisation
method (SLM), the Matlab bvp4c, a shooting technique and the Keller-box method.
For the smooth cone the effects of the governing parameters on the velocity, temperature and
concentration profiles have been studied. The effects of Dufour and Soret effect on the rate of
heat and mass transfer were determined. Comparison between our results and earlier results
has been made. The findings suggest that the successive linearisation method is a reliable
method for solving nonlinear ordinary differential equations.
In the case of the wavy cone we have studied the effects of cross-diffusion on the heat and
the mass transfer rates. From the present study we can see that D f reduces heat transfer and
increases mass transfer. The effect of Sr is exactly the opposite except at high Lewis numbers
when the heat transfer rate increases up to a critical value of Sr and then starts decreasing
beyond that value.
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